Estimating causal effects under untestable assumptions with non-ignorable missing data

UK Causal Inference meeting 2017

Manuel Gomes

April 7, 2017



Team for Health Economics Policy and Technology Assessment

theta.lshtm.ac.uk







- Causal inference with non-ignorable missing data
- Selection models
- The role of the exclusion restriction
- The REFLUX study
- Discussion



Suppose we would like to estimate the causal effect of Y on X, but Y is partially observed.

$$f(\mathbf{Y}|\mathbf{X};\boldsymbol{\beta}) \qquad \mathbf{R} = \begin{cases} 1 & if \ Y & is \ observed \\ 0 & if \ Y & is \ missing \end{cases}$$

1

Ignorable missing data (Missing at random - MAR)



Non-ignorable missing data (Missing not at random - MNAR)





Joint model of **Y** and **R** is required with non-ignorable missing data

 $f(\boldsymbol{Y}, \boldsymbol{R} | \boldsymbol{X}; \boldsymbol{\theta})$ 

## Why selection models?

- commonly used in social and health sciences
- familiarity with the Heckman selection model
- follows naturally from the substantive and missing data models:

 $f(\mathbf{Y}, \mathbf{R} | \mathbf{X}; \boldsymbol{\theta}) = f(\mathbf{Y} | \mathbf{X}; \boldsymbol{\beta}) P(\mathbf{R} | \mathbf{Y}, \mathbf{X}; \boldsymbol{\gamma})$ 



 $Y_{1i}$  - outcome;  $Y_{2i}$  - latent variable ( $R_i = 1$  if  $Y_{2i} > 0$ ; 0 otherwise)

$$\begin{array}{ll} Y_{1i} = \beta X_i + \varepsilon_i \\ Y_{2i} = \gamma Z_i + \upsilon_i \end{array} \qquad \begin{pmatrix} \varepsilon_i \\ \upsilon_i \end{pmatrix} \sim BVN\left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}\begin{pmatrix} \sigma_{\varepsilon}^2 & \rho \sigma_{\varepsilon} \\ & 1 \end{pmatrix}\right)$$

$$E(Y_{1i}|X_i, Y_{2i} > 0) = \beta X_i + \rho \sigma_{\varepsilon} \lambda_i \qquad \lambda_i = \frac{\phi(\gamma Z_i)}{\Phi(\gamma Z_i)}$$

**<u>Step 1</u>**: Regress  $Y_{2i}$  on  $Z_i$  (probit) in the full sample to estimate  $\hat{\gamma}$  and construct  $\hat{\lambda}_i$ 

**<u>Step 2</u>**: Estimate parameters of interest ( $\hat{\beta}$ ) in the observed sample from

$$Y_{1i} = \beta X_i + \beta_\lambda \hat{\lambda}_i + \varepsilon_i$$

<u>Consistent variance</u>:  $V(\varepsilon_i | X_i, Y_{2i} > 0) = \sigma_{\varepsilon}^2 (1 - \rho^2 (\lambda_i^2 + \gamma Z_i \lambda_i))$ 

# **Joint full maximum likelihood**



### Substantive model

$$Y_i = \beta X_i + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \sigma_{\varepsilon}^2)$$

Missing data model

$$logit(P(R_i = 1)) = \gamma Z_i + \alpha Y_i$$

Equivalent to Heckman selection specification (derivation in Appendix)

- Models are often jointly estimated via EM or MCMC techniques.

Log likelihood:Marginal probability<br/>that  $R_i = 0$ Joint probability of  $Y_i$ <br/>and  $R_i = 1$  $log L (\beta, \gamma, \alpha, \sigma_{\varepsilon}) = \sum_{R=0} \log[1 - \Phi(\gamma Z_i)] + \sum_{R=1} \left[ -log \sigma_{\varepsilon} + \right]$ 

# **Multiple imputation using Heckman**



Imputed values drawn from:

$$Y_i^{miss} \sim N(\beta X_i + \beta_\lambda \lambda_i', \sigma_\varepsilon^2),$$

$$\lambda_i' = \frac{-\phi(\gamma Z_i)}{1 - \Phi(\gamma Z_i)}$$

 $\lambda'_i$  - inverse Mills ratio derived from conditional expectation of  $R_i = 0$ 

## <u>Algorithm</u>

- 1) Run Heckman's first step (probit) and compute  $\hat{\lambda}'_i = \frac{-\phi(\hat{\gamma}Z_i)}{1-\Phi(\hat{\gamma}Z_i)}$
- 2) Fit Heckman's second step (OLS) to estimate  $\hat{\beta}$ ,  $\hat{\beta}_{\lambda}$ ,  $\hat{\sigma}_{\varepsilon}$

3) Compute Bayesian posterior draws for  $\beta^*$ ,  $\beta^*_{\lambda}$ ,  $\sigma^*_{\varepsilon}$  in the standard way 4) Draw  $\varepsilon$  from  $N(0, \sigma^{2*}_{\varepsilon})$ 

- 5) For each  $Y_i^{miss}$ , impute  $Y_i^*$  from  $Y_i^* = \beta^* X_i + \beta_\lambda^* \hat{\lambda}'_i + \varepsilon^*$
- 6) Repeat steps 1) to 5) *M* times to obtain *M* imputed datasets

7) Apply substantive model to each imputed dataset and the resulting estimates can combined using Rubin's rules as usual.

# **Methodological intrigue**



## Key assumptions in selection models

- Parametric assumptions
  - Distributional assumptions for  $(\varepsilon_i, v_i)$ , link function, etc.
  - Been largely addressed (semi-parametric, non-parametric approaches)

## Exclusion restrictions

- Variables that predict R but are (conditionally) independent of Y
- Heckman's performance shown to depend on valid exclusion restrictions when handling sample selection
- Unclear to what extent Heckman relies on this in MNAR settings
- Importance of these variables to other selection models received little attention

<u>AIM:</u> - Critically assess the role of exclusion restrictions in selection models across typical MNAR settings.

## **Simulation study**



#### **Design – MNAR settings**



# **Simulation study**



#### Scenarios (within each mechanism)

- Scenario A: 20% missing, cor(Y, R), = 0.1 (weak MNAR), cor(Z, X) = 0.7
- Scenario B: 20% missing, cor(Y, R), = 0.4 (strong MNAR), cor(Z, X) = 0.7
- Scenario C: 50% missing, cor(Y, R), = 0.4 (strong MNAR), cor(Z, X) = 0.7
- Scenario D: 50% missing, cor(Y, R), = 0.4 (strong MNAR), cor(Z, X) = 0.3

#### Methods

- MI (assuming MAR)
- 2-step Heckman approach
- MI based on the 2-step Heckman procedure
- Joint Bayesian selection model

#### **Parameter of interest**

$$Y_i = \beta_0 + \boldsymbol{\beta_1} X_i + \varepsilon_i$$

# **Results: MNAR 1**



| Scenario      | Method         | % bias | 95% CI   | rMSE  |
|---------------|----------------|--------|----------|-------|
|               |                |        | coverage |       |
| MNAR1a        | Full data      | 1%     | 0.947    | 0.023 |
| % missing=0.2 | MI (MAR)       | 5%     | 0.942    | 0.026 |
| Cor(Y,R)=0.1  | Heckman 2-step | 5%     | 0.998    | 0.155 |
| Cor(Z,X)=0.7  | MI_Heckman     | 4%     | 0.998    | 0.089 |
|               | Joint Bayesian | 1%     | 0.945    | 0.026 |
| MNAR1d        | Full data      | 1%     | 0.947    | 0.023 |
| % missing=0.5 | MI (MAR)       | 16%    | 0.924    | 0.041 |
| Cor(Y,R)=0.4  | Heckman 2-step | 9%     | 0.990    | 0.359 |
| Cor(Z,X)=0.3  | MI_Heckman     | 5%     | 0.997    | 0.129 |
|               | Joint Bayesian | 2%     | 0.934    | 0.040 |

## **Results: MNAR 2 and 4**





## **Results: MNAR 4 – Skewed data**





# **Results: Exclusion restriction in joint selection models**



|                  | Method                    | % bias           | 95% CI             | rMSE               |
|------------------|---------------------------|------------------|--------------------|--------------------|
|                  |                           |                  | coverage           |                    |
| Weak exclusion   | Full data                 | 0%               | 0.943              | 0.016              |
| restriction      | Heckman 2-step            | 2%               | 0.986              | 0.178              |
|                  | MI-Heckman                | 1%               | 0.969              | 0.156              |
|                  | <mark>Bayesian_noZ</mark> | <mark>32%</mark> | <mark>0.740</mark> | <mark>0.040</mark> |
|                  | Bayesian model            | 49%              | 0.564              | 0.056              |
| Strong exclusion | Full data                 | 0%               | 0.943              | 0.016              |
| restriction      | Heckman 2-step            | 4%               | 0.964              | 0.032              |
|                  | MI-Heckman                | 5%               | 0.983              | 0.034              |
|                  | <mark>Bayesian_noZ</mark> | <mark>55%</mark> | <mark>0.400</mark> | <mark>0.061</mark> |
|                  | Bayesian model            | 50%              | 0.537              | 0.057              |

# **Main findings**



- Work adds to previous evidence on Heckman's 2-step
  - Reliance on strong exclusion restrictions
  - Robust to departures from Normality (Moments estimator)
- We propose MI based on a selection model
  - Makes no additional assumptions
  - Performs similarly to the underlying selection model (Heckman's), but slightly more precise (estimates based on whole sample)
- Joint selection models perform well but
  - Rely heavily on distributional assumptions
  - Exclusion restrictions need to be included

# **Case study - REFLUX**



- Longitudinal study looking at causal effect of surgery on 5-year quality-adjusted life-years on patients with reflux disease.
- 52% missing QALYs
  - Can't exclude MNAR
  - Patients in worse health may feel the surgery is not working and may be less likely to complete questionnaires/answer the phone
- MNAR setting



- Z general views about medicine
- X1 key prognostic factors (e.g. age)
- X2 predictors of R but not included in model (e.g. education)

## **Results: case study**



|              | Complete      | MI (MAR)   | Heckman 2-   | MI-Heckman | Joint model |
|--------------|---------------|------------|--------------|------------|-------------|
|              | cases (N=231) | (N=453)    | step (N=231) | (N=453)    | (N=453)     |
| Surgery      | 0.361         | 0.410      | 0.434        | 0.442      | 0.443       |
|              | (0.101)***    | (0.101)*** | (0.098)***   | (0.095)*** | (0.095)***  |
| Male         | -0.153        | -0.192     | -0.212       | -0.211     | -0.197      |
|              | (0.097)       | (0.099)    | (0.098)*     | (0.094)*   | (0.094)*    |
| Age          | -0.003        | -0.006     | -0.007       | -0.006     | -0.006      |
|              | (0.004)       | (0.004)    | (0.004)      | (0.004)    | (0.004)     |
| Baseline     | 2.066         | 2.151      | 2.171        | 2.112      | 2.174       |
| EQ-5D        | (0.227)***    | (0.223)*** | (0.216)***   | (0.197)*** | (0.198)***  |
| REFLUX score | -0.004        | -0.007     | -0.007       | -0.007     | -0.007      |
|              | (0.003)       | (0.004)    | (0.004)      | (0.003)*   | (0.003)*    |
| BMI          | -0.026        | -0.010     | -0.006       | -0.010     | -0.008      |
|              | (0.013)*      | (0.012)    | (0.012)      | (0.011)    | (0.011)     |
| ()           |               |            |              |            |             |

## Discussion



- It is not about the right answer (!)
  - Untestable assumptions
- Where do you want to put your assumptions?
  - Valid exclusion restrictions are rare in health settings
  - 'True' distribution or model specification are unknown
- MNAR best handled via sensitivity analysis
  - should empower decision makers to frame transparent, readily interpretable assumptions
  - allow defensible inferences/recommendations

## Appendix



Let  $Y_{1i}$  and  $Y_{2i}$  be defined as before (omitting the individual index *i*)

$$\begin{split} Y_1 &= \beta_1 X_1 + e_1, & e_1 \sim N(0, \sigma_1^2) \\ Y_2 &= \beta_2 X_2 + e_2, & e_2 \sim N(0, 1), & \operatorname{cor}(e_1, e_2) = \rho \end{split}$$

Suppose there is a random variable  $U \sim N(0, 1 - \rho^2)$  such that  $e_2 = \lambda e_1 + U$ 

Where  $\lambda = \rho \sigma_1$ , and U is independent of  $e_1$ . Substituting for  $e_2$  in  $Y_2$ 

$$Y_2 = \lambda Y_1 + \gamma X^* + U,$$

Where

$$\gamma X^* = X(\beta_{2a} - \lambda \beta_{1a}) - \beta_{1b} X_1^* + \beta_{2b} X_2^*$$

for

$$X_1 = (X, X_1^*), X_2 = (X, X_2^*), \beta_1^T = (\beta_{1a}^T, \beta_{1b}^T), \beta_2^T = (\beta_{2a}^T, \beta_{2b}^T)$$

# **Appendix (cont)**



Define

$$\lambda^* = \frac{\lambda}{\sqrt{1-\rho^2}}, \gamma^* = \frac{\gamma}{\sqrt{1-\rho^2}}, U^* = \frac{U}{\sqrt{1-\rho^2}}$$

Then  $U^* \sim N(0, 1)$  and

$$P(Y_2 > 0 | X_1, X_2, Y_1) = P(\lambda Y_1 + \gamma X^* \ge -U)$$
  
=  $P(\lambda^* Y_1 + \gamma^* X^* \ge -U^*)$   
=  $\Phi(\lambda^* Y_1 + \gamma^* X^*)$ 

A standard probit selection model.