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Suppose we would like to estimate the causal effect of 𝒀 on 𝑿, but 𝒀 is 
partially observed.

𝑓 𝒀 𝑿;𝜷) 𝑹 = ቊ
1 𝑖𝑓 𝑌 𝑖𝑠 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
0 𝑖𝑓 𝑌 is missing

Ignorable missing data (Missing at random - MAR)

Non-ignorable missing data (Missing not at random - MNAR)

Non-ignorable missing data
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Joint model of 𝒀 and R is required with non-ignorable missing data

𝑓 𝒀,𝑹 𝑿;𝜽)

Why selection models?

- commonly used in social and health sciences

- familiarity with the Heckman selection model

- follows naturally from the substantive and missing data models:

𝑓 𝒀,𝑹 𝑿;𝜽) = 𝑓 𝒀 𝑿;𝜷) P 𝑹 𝒀,𝑿; 𝜸)

Selection models



𝒀1𝑖 - outcome; 𝒀2𝑖 - latent variable (𝑅𝑖 =1 if 𝑌2𝑖 > 0; 0 otherwise)

𝑌1𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖
𝑌2𝑖 = 𝛾𝑍𝑖 + 𝜐𝑖

𝜀𝑖
𝜐𝑖

~𝐵𝑉𝑁
0
0

𝜎𝜀
2 𝜌𝜎𝜀

1

𝐸 𝑌1𝑖 𝑋𝑖 , 𝑌2𝑖 > 0 = 𝛽𝑋𝑖 + 𝜌𝜎𝜀𝜆𝑖 𝜆𝑖=
𝜙 𝛾𝑍𝑖
Φ 𝛾𝑍𝑖

Step 1: Regress 𝑌2𝑖 on 𝑍𝑖 (probit) in the full sample to estimate ො𝛾 and 

construct መ𝜆𝑖

Step 2: Estimate parameters of interest ( መ𝛽) in the observed sample from

𝑌1𝑖 = 𝛽𝑋𝑖 + 𝛽𝜆 መ𝜆𝑖 + 𝜀𝑖

Consistent variance:  𝑉 𝜀𝑖 𝑋𝑖 , 𝑌2𝑖 > 0 = 𝜎𝜀
2(1 − 𝜌2(𝜆𝑖

2+ 𝛾𝑍𝑖𝜆𝑖))

Heckman model (2-step)



Substantive model

𝑌𝑖 = 𝛽𝑋𝑖 + 𝜀𝑖, 𝜀𝑖~𝑁(0, 𝜎𝜀
2)

Missing data model

logit(𝑃(𝑅𝑖 = 1)) = 𝛾𝑍𝑖 + 𝛼𝑌𝑖

- Models are often jointly estimated via EM or MCMC techniques.

Log likelihood:

𝑙𝑜𝑔 𝐿 𝛽, 𝛾, 𝛼, 𝜎𝜀 = σ𝑅=0 log[1 − Φ(𝛾𝑍𝑖)] + σ𝑅=1 ቈ−𝑙𝑜𝑔𝜎𝜀 +

Joint full maximum likelihood

Marginal probability 
that 𝑅𝑖 = 0

Joint probability of 𝑌𝑖
and 𝑅𝑖 = 1

Equivalent to 
Heckman 
selection 

specification 
(derivation in 

Appendix)



Imputed values drawn from:

𝑌𝑖
𝑚𝑖𝑠𝑠~ 𝑁(𝛽𝑋𝑖 + 𝛽𝜆𝜆𝑖

′ , 𝜎𝜀
2), 𝜆𝑖

′=
−𝜙(𝛾𝑍𝑖)

1−Φ(𝛾𝑍𝑖)

𝜆𝑖
′ - inverse Mills ratio derived from conditional expectation of 𝑅𝑖 = 0

Algorithm

1) Run Heckman’s first step (probit) and compute መ𝜆𝑖
′ =

−𝜙(ෝ𝛾𝑍𝑖)

1−Φ(ෝ𝛾𝑍𝑖)

2) Fit Heckman’s second step (OLS) to estimate መ𝛽, መ𝛽𝜆 , ො𝜎𝜀
3) Compute Bayesian posterior draws for 𝛽∗, 𝛽𝜆

∗, 𝜎𝜀
∗ in the standard way

4) Draw 𝜀 from 𝑁(0, 𝜎𝜀
2∗)

5) For each 𝑌𝑖
𝑚𝑖𝑠𝑠, impute 𝑌𝑖

∗ from 𝑌𝑖
∗ = 𝛽∗𝑋𝑖 + 𝛽𝜆

∗ መ𝜆𝑖
′ + 𝜀∗

6) Repeat steps 1) to 5) M times to obtain M imputed datasets

7) Apply substantive model to each imputed dataset and the resulting estimates 
can combined using Rubin’s rules as usual.

Multiple imputation using Heckman



Key assumptions in selection models

• Parametric assumptions
– Distributional assumptions for (𝜀𝑖 , 𝜐𝑖), link function, etc.

– Been largely addressed (semi-parametric, non-parametric approaches)

• Exclusion restrictions 
– Variables that predict 𝑅 but are (conditionally) independent of Y

– Heckman’s performance shown to depend on valid exclusion restrictions when 
handling sample selection 

– Unclear to what extent Heckman relies on this in MNAR settings

– Importance of these variables to other selection models received little attention

AIM: - Critically assess the role of exclusion restrictions in selection 
models across typical MNAR settings.

Methodological intrigue



Simulation study

Design – MNAR settings
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Simulation study

Scenarios (within each mechanism)

- Scenario A: 20% missing, 𝑐𝑜𝑟 𝑌, 𝑅 ,= 0.1 weak MNAR , 𝑐𝑜𝑟 𝑍, 𝑋 = 0.7

- Scenario B: 20% missing, 𝑐𝑜𝑟 𝑌, 𝑅 ,= 0.4 strong MNAR , 𝑐𝑜𝑟 𝑍, 𝑋 = 0.7

- Scenario C: 50% missing, 𝑐𝑜𝑟 𝑌, 𝑅 ,= 0.4 strongMNAR , 𝑐𝑜𝑟 𝑍, 𝑋 = 0.7

- Scenario D: 50% missing, 𝑐𝑜𝑟 𝑌, 𝑅 ,= 0.4 strong MNAR , 𝑐𝑜𝑟 𝑍, 𝑋 = 0.3

Methods

- MI (assuming MAR)

- 2-step Heckman approach

- MI based on the 2-step Heckman procedure

- Joint Bayesian selection model

Parameter of interest

𝑌𝑖 = 𝛽0 + 𝜷𝟏𝑋𝑖 + 𝜀𝑖



Results: MNAR 1

Scenario Method % bias 95% CI 

coverage

rMSE

MNAR1a

% missing=0.2

Cor(Y,R)=0.1

Cor(Z,X)=0.7

Full data 1% 0.947 0.023

MI (MAR) 5% 0.942 0.026

Heckman 2-step 5% 0.998 0.155

MI_Heckman 4% 0.998 0.089

Joint Bayesian 1% 0.945 0.026

MNAR1d

% missing=0.5

Cor(Y,R)=0.4

Cor(Z,X)=0.3

Full data 1% 0.947 0.023

MI (MAR) 16% 0.924 0.041

Heckman 2-step  9% 0.990 0.359

MI_Heckman 5% 0.997 0.129

Joint Bayesian 2% 0.934 0.040



Results: MNAR 2 and 4



Results: MNAR 4 – Skewed data



Results: Exclusion restriction in joint 

selection models

Method % bias 95% CI 

coverage

rMSE

Weak exclusion 

restriction

Full data 0% 0.943 0.016

Heckman 2-step 2% 0.986 0.178

MI-Heckman 1% 0.969 0.156

Bayesian_noZ 32% 0.740 0.040

Bayesian model 49% 0.564 0.056

Strong exclusion 

restriction

Full data 0% 0.943 0.016

Heckman 2-step 4% 0.964 0.032

MI-Heckman 5% 0.983 0.034

Bayesian_noZ 55% 0.400 0.061

Bayesian model 50% 0.537 0.057



• Work adds to previous evidence on Heckman’s 2-step
– Reliance on strong exclusion restrictions

– Robust to departures from Normality (Moments estimator)

• We propose MI based on a selection model
– Makes no additional assumptions

– Performs similarly to the underlying selection model (Heckman’s), but 
slightly more precise (estimates based on whole sample)

• Joint selection models perform well but
– Rely heavily on distributional assumptions

– Exclusion restrictions need to be included

Main findings



• Longitudinal study looking at causal effect of surgery on 5-year 
quality-adjusted life-years on patients with reflux disease.

• 52% missing QALYs
– Can’t exclude MNAR

– Patients in worse health may feel the surgery is not working and may be 
less likely to complete questionnaires/answer the phone

• MNAR setting

Z – general views about medicine

X1 – key prognostic factors (e.g. age)

X2 – predictors of R but not 

included in model (e.g. education)

Case study - REFLUX

R

Y
X1

Z X2



Results: case study

Complete
cases (N=231)

MI (MAR)
(N=453)

Heckman 2-
step (N=231)

MI-Heckman 
(N=453)

Joint model
(N=453)

Surgery 0.361 
(0.101)***

0.410
(0.101)***

0.434 
(0.098)***

0.442 
(0.095)***

0.443 
(0.095)***

Male -0.153 
(0.097)

-0.192 
(0.099)

-0.212 
(0.098)*

-0.211 
(0.094)*

-0.197 
(0.094)*

Age -0.003 
(0.004)

-0.006 
(0.004)

-0.007
(0.004)

-0.006
(0.004)

-0.006
(0.004)

Baseline
EQ-5D

2.066
(0.227)***

2.151 
(0.223)***

2.171 
(0.216)***

2.112 
(0.197)***

2.174 
(0.198)***

REFLUX score -0.004 
(0.003)

-0.007
(0.004)

-0.007 
(0.004)

-0.007
(0.003)*

-0.007
(0.003)*

BMI -0.026
(0.013)*

-0.010
(0.012)

-0.006
(0.012)

-0.010
(0.011)

-0.008
(0.011)

(…)



• It is not about the right answer (!)
– Untestable assumptions

• Where do you want to put your assumptions?
– Valid exclusion restrictions are rare in health settings

– ‘True’ distribution or model specification are unknown

• MNAR best handled via sensitivity analysis 
– should empower decision makers to frame transparent, readily interpretable 

assumptions

– allow defensible inferences/recommendations

Discussion



Let 𝑌1𝑖 and 𝑌2𝑖 be defined as before (omitting the individual index i)

𝑌1 = 𝛽1𝑋1 + 𝑒1, 𝑒1~𝑁(0, 𝜎1
2)

𝑌2 = 𝛽2𝑋2+ 𝑒2, 𝑒2~𝑁(0, 1), cor(𝑒1,𝑒2) = 𝜌

Suppose there is a random variable 𝑈~𝑁(0, 1 − 𝜌2) such that
𝑒2 = 𝜆𝑒1 +𝑈

Where λ = 𝜌𝜎1, and U is independent of 𝑒1. Substituting for 𝑒2 in 𝑌2

𝑌2 = 𝜆𝑌1 + 𝛾𝑋∗ + 𝑈, 

Where
𝛾𝑋∗ = 𝑋 𝛽2𝑎 − λ𝛽1𝑎 − 𝛽1𝑏𝑋1

∗ + 𝛽2𝑏𝑋2
∗

for 

𝑋1 = 𝑋,𝑋1
∗ , 𝑋2 = 𝑋, 𝑋2

∗ , 𝛽1
𝑇 = 𝛽1𝑎

𝑇 , 𝛽1𝑏
𝑇 , 𝛽2

𝑇 = 𝛽2𝑎
𝑇 , 𝛽2𝑏

𝑇

Appendix



Define

𝜆∗ =
𝜆

1−𝜌2
, 𝛾∗ =

𝛾

1−𝜌2
, 𝑈∗ =

𝑈

1−𝜌2

Then 𝑈∗~𝑁(0, 1) and

𝑃 𝑌2 > 0 𝑋1, 𝑋2, 𝑌1 = 𝑃(𝜆𝑌1 + 𝛾𝑋∗ ≥ −𝑈)

= 𝑃(𝜆∗𝑌1 + 𝛾∗𝑋∗ ≥ −𝑈∗)

= Φ(𝜆∗𝑌1 + 𝛾∗𝑋∗)

A standard probit selection model.

Appendix (cont)


